Hydrogeolgy Equation Sheet

$$
\rho_{d r y}=\frac{M_{s}}{V_{T}} \quad \rho_{m}=\frac{M_{s}}{V_{S}} \quad \rho_{s a t}=\frac{M_{s a t}}{V_{T}} \quad V_{T}=V_{s}+V_{v} \quad n=\frac{V_{v}}{V_{T}} \quad \theta=\frac{V_{w}}{V_{T}} \quad n=1-\left(\frac{\rho_{d r y}}{\rho_{m}}\right)
$$

$$
V_{s}=(1-n) V_{T} \quad e=\frac{V_{v}}{V_{s}} \quad n=\frac{e}{1+e} \quad C_{u}=\frac{d_{60}}{d_{10}} \quad S_{y}=\frac{V_{w d}}{V_{T}} \quad S_{r}=\frac{V_{w r}}{V_{T}} \quad n=S_{y}+S_{r}
$$

$$
\tau=\mu\left(\frac{d v}{d x}\right) \quad R_{e}=\frac{\rho v d}{\mu} \quad E=\frac{P W}{\rho g}+\frac{m v^{2}}{2}+z W \quad h=\frac{P}{\rho g}+\frac{v^{2}}{2 g}+z \quad \Phi=g h
$$

$$
P=\rho g h \quad \sigma=\frac{F}{A} \quad \sigma_{T}=\rho_{s}(1-n) g z+n \rho_{w} g h \quad \sigma_{e}=\sigma_{T}-P \quad F_{s}=\rho g \frac{d h}{d z}
$$

$$
Q=-K A\left(\frac{d h}{d l}\right) \quad q=\frac{Q}{A} \quad v=\frac{q}{n} \quad K=k_{i}\left(\frac{\rho g}{\mu}\right) \quad v_{z}=\frac{q_{z}}{\theta}=-\frac{K(\theta)}{\theta} \cdot \frac{d}{d z}(\psi(\theta)+z)
$$

$$
K_{\|}=\sum \frac{K_{i} b_{i}}{b_{T}} \quad K_{\perp}=\frac{b_{T}}{\sum \frac{b_{i}}{K_{i}}} \quad \beta=-\left(\frac{d \rho / \rho}{d P}\right) \quad \beta=-\left(\frac{d V_{w} / V_{w}}{d P}\right) \quad \alpha=-\left(\frac{d V_{T} / V_{T}}{d \sigma_{e}}\right)
$$

$$
S_{s}=\rho_{w} g(\alpha+n \beta) \quad S=S_{s} b \quad T=K b \quad V_{w}=S A \Delta h
$$

$$
\frac{\partial}{\partial x}\left(K_{x} \frac{\partial h}{\partial x}\right)+\frac{\partial}{\partial y}\left(K_{y} \frac{\partial h}{\partial y}\right)+\frac{\partial}{\partial z}\left(K_{z} \frac{\partial h}{\partial z}\right)=0 \quad \frac{\partial^{2} h}{\partial x^{2}}+\frac{\partial^{2} h}{\partial y^{2}}+\frac{\partial^{2} h}{\partial z^{2}}=0
$$

$$
\frac{\partial}{\partial x}\left(K_{x} \frac{\partial h}{\partial x}\right)+\frac{\partial}{\partial y}\left(K_{y} \frac{\partial h}{\partial y}\right)+\frac{\partial}{\partial z}\left(K_{z} \frac{\partial h}{\partial z}\right)=S_{s} \frac{\partial h}{\partial t} \quad \frac{\partial^{2} h}{\partial x^{2}}+\frac{\partial^{2} h}{\partial y^{2}}+\frac{\partial^{2} h}{\partial z^{2}}=\frac{S_{s}}{K} \frac{\partial h}{\partial t}
$$

$$
\frac{\partial^{2} h}{\partial x^{2}}+\frac{\partial^{2} h}{\partial y^{2}}=\frac{S}{T} \frac{\partial h}{\partial t} \quad \frac{\partial^{2} h}{\partial r^{2}}+\frac{1}{r} \frac{\partial h}{\partial r}=\frac{S}{T} \frac{\partial h}{\partial t}
$$

$$
Q=\frac{p K H}{f} \quad p=\# \text { streamtubes and } f=\# \text { head drops }
$$

$$
h_{o}-h=\frac{Q}{4 \pi T} W(u) \quad u=\frac{r^{2} S}{4 T t} \quad W(u)=-0.5772-\ln (u)+u-\frac{u^{2}}{2 \cdot 2!}+\frac{u^{3}}{3 \cdot 3!}-\frac{u^{4}}{4 \cdot 4!}+\cdots
$$

$$
\text { Theis Relations: } \quad T=\frac{Q}{4 \pi\left(h_{o}-h\right)} W(u) \quad \text { and } \quad S=\frac{4 T u t}{r^{2}}
$$

Cooper-Jacob Relations: $\quad T=\frac{2.3 Q}{4 \pi \Delta\left(h_{o}-h\right)} \quad$ and $\quad S=\frac{2.25 T t_{o}}{r^{2}}$

$$
z=\left(\frac{\rho_{f}}{\rho_{s}-\rho_{f}}\right) h \quad \text { or } \quad z \approx 40 h
$$

